
Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

101 

 

 

 

SSOOLLVVIINNGG  TTHHEE  NNEEXXTT  RREELLEEAASSEE  PPRROOBBLLEEMM    

UUSSIINNGG  AA  HHYYBBRRIIDD  MMEETTAAHHEEUURRIISSTTIICC  

 

AA..  OO..  BBaalloogguunn,,  MM..  AA..  MMaabbaayyoojjee,,  MM..  OO..  MMaakkiinnwwaa,,  AA..  OO..  BBaajjeehh  
 

Department of Computer Science, University of Ilorin, Ilorin, Nigeria 

 

Corresponding author: A. O. Balogun, bharlow058@gmail.com  

 
ABSTRACT:  The Next Release Problem is characterized 

by the need to determine the features that are to be 

included in a particular software system to make up the 

next release. These features are to be selected, such that 

users’ demands and needs are satisfied as much as 

possible, given a limited resources, by ensuring that the 

available resources are used to develop the most 

important features first. This work applies a hybrid of 

Variable Neighbourhood Search (VNS) and Tabu Search 

(TS) for solving bi-objective NRP, using a cost-value 

model for requirements. Experiments showed the hybrid 

metaheuristics to produce a Pareto optimal set with a 
controllable dynamic number of options whose score and 

cost value range can be controlled via parameters that 

can be modified without a significant effect on execution 

time. 

KEYWORDS: Software Engineering, Search Based 

Software Engineering, Next Release Problem, Variable 

Neighbourhood Search, Tabu Search, Optimization, 

Multiobjectivity. 

 

1. INTRODUCTION 

 

A problem inevitable to software engineers and 

organizations that develop and maintain large and 
complex software to be used by some range of users, 

is the problem of selecting what should be in the 

next release of the software. The problem is 
characterized by users requesting for a wide range of 

changes (requirements) in the software, costs of 

meeting such requirements (time and effort) varying 
widely, a situation where some changes in the 

software will require some other prerequisite 

changes, users have different values to the software 

engineer or organization, and as such, the various 
requirements have to be considered in a way that 

customers with more value will be favoured more 

([BRW01]). Software engineers need to select 
requirements to include in the software next release 

such that customers’ demands and needs are as 

much as possible satisfied while ensuring that 

budget (time and money) for the software 
development is not exceeded by ensuring that the 

available resources are used to develop the most 

important requirements first. This problem is called 
the Next Release Problem (NRP). It is very 

important to the software engineers and 

organizations alike that this set of requirements to be 

fulfilled in the next release be carefully selected so 

as to avoid losing important customers and going 
over budget which could result when a wrong 

decision is made in selecting which requirements to 

actually fulfill. 
Selecting an optimal set of requirements for the next 

release of a software is an optimization problem and 

it is NP-hard ([BRW01]). Various heuristics – local 

search algorithms like hill climbing algorithm, 
simulated annealing; global search algorithms like 

genetic algorithms; and multi-objective algorithms 

like ant colony optimization algorithm, pareto GA, 
pareto archived evolutionary strategy (PAES), non-

dominated sorting genetic algorithm II (NSGA-II), 

have been used in literature to find high quality near 
optimal solutions with NSGA II giving the highest 

number of optimal solutions for large test cases 

([D+11]). 

Various solution models for NRP have been 
developed over the years. Bagnall et al. ([BRW01]) 

proposed a model for the NRP where each customer 

is of some importance to the organization and 
requests the implementation of a set of requirements 

in the software next release. The goal of this model 

is to select a subset of clients to be satisfied so that 
the sum of their importance is maximized. 

Customers whose requested requirements are 

included in the release are deemed satisfied. Van den 

Akker, Brinkkemper, Diepen & Versendaal 
([V+05]) proposed a variation of this model where 

requirements are considered to have importance 

values instead of customers. These importance 
values of requirements are aggregates of the 

customers that require them and the importance of 

such customers. Lim ([Lim10]) and Lim & 

Finkelstein ([LF12]) developed a way of 
determining the importance of customers 

(stakeholder) and hence, the aggregate importance of 

requirements by using social networks of 
stakeholders and collaborative filtering (StakeNet 

and StakeRare). 

mailto:bharlow058@gmail.com


Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

102 

Furthermore, the Next Release Problem (NRP) is an 
example of Feature Subset Selection (FSS) Problem 

([B+06, ZH10, ZHL13, ZHM07, HT07]). Baker et 

al. ([B+06]) formulated both ranking and selection 
of candidate software components as a series of 

feature subset selection problems to which heuristics 

was be applied. Garcia-Torres, Garcia-Lopez, 

Melian-Batista, Moreno-Perez, & Moreno-Vega 
([G+04]) applied a hybrid metaheuristic based on 

Variable Neighbourhood Search (VNS) and Tabu 

Search (TS) – both global search algorithms, to 
solving the FSS problem with the hybrid producing 

results with a higher reduction in the set of features 

than those gotten from applying genetic algorithm. 

This research work applies a hybrid of Variable 
Neighbourhood Search (VNS) and Tabu Search (TS) 

to solving the NRP, using a cost-value model for 

requirements. 

 

2. RELATED WORKS 

 
Metaheuristic search techniques have been quite 

significantly applied to software engineering 

problems ([HMZ09]). This is due to the fact that 

such software engineering problems can be readily 
formulated as optimization problems as they have 

the characteristics of requiring a balance between 

objectives that are conflicting and competing 
([HMZ09, H+12]). This review will focus on Search 

Based Software Engineering (SBSE) and the 

previous work that has been done on applying SBSE 
to the various stages in the software development 

life cycle. 

 

2.1. Search Based Software Engineering (SBSE) 
 

In their paper, Harman & Jones ([HJ01]) claimed the 

emergence of the new field of research and practice 
in software engineering and coined the name Search 

Based Software Engineering (SBSE). They argued 

that most software engineering problems can be 

represented as search problems such that 
metaheuristics can be applied to find near optimal 

solutions to them. 

The following observations are typical of software 
engineering problems, basically the factors that 

make them so suitable to be reformulated as search 

problems (HJ01): 
1. Usual need to optimize conflicting 

objectives 

2. Usual need to balance competing objectives 

3. There are usually quite a number of possible 
solutions 

4. Getting a perfect answer is often impossible 

or impractical 
5. A number of good enough solutions can be 

achieved 

 

Fig. 1. Example of SBSE in requirements selection and 

regression testing ([H+12]) 

 

2.1.1. SBSE in Requirements Analysis and 

Selection 

 
Whether or not a software system will succeed 

depends on how well it caters to the needs of its 

users in the form of software requirements.  
 

Fig. 2. Traditional engineering fields vs software 

engineering in the application of optimization ([Har10]) 
 
Requirements Engineering (RE) is the process 

through which requirements are elicited, modeled, 

analyzed, and documented ([CA07]). Usually, these 

users’ requirements are so many that it would be 
impractical to care to them all given time and budget 

constraints. A software engineer is therefore faced 

with the challenge of selecting a smaller set of these 
requirements that can be adequately developed with 

the available resources. By its nature, selecting a 

subset of requirements from a larger set of 
requirements to develop in the release of a software 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

103 

is a difficult task owing to the fact that a number of 
factors are involved ([D+15]). On one hand, all users 

want all their requirements to be developed in the 

system, but the effect of the cost of those 
requirements on the budget is fundamentally against 

the goal of software engineering. On the other hand, 

each user has a different level of importance to the 

software organization, also requirements have 
different levels of importance to users. Marketing 

concerns can also make the organization to want to 

satisfy their newest user, or they may want every 
user to have at least one of their requirements 

developed. 

Bagnall, Rayward-Smith and Whittley ([BRW01]) 

standardized the application of SBSE to 
requirements engineering as the Next Release 

Problem (NRP), proposing a model where each user 

has an importance value to the organization and 
requests the implementation of a set of requirements 

in the software system. This model aims to select a 

subset of users to be satisfied such that the sum of 
their importance values is maximized. Users whose 

requirements are developed in the software system 

are considered satisfied. Van den Akker, 

Brinkkemper, Diepen and Versendaal ([V+05]) 
offered a modification to this model where 

requirements are seen to have importance values 

rather than users. The importance value for each 
requirement is gotten by aggregating the importance 

values and number of the customers that require it. 

Lim ([Lim10]) and Lim & Finkelstein ([LF12]) 
created a way to determine the importance value of 

users (stakeholder) and hence, the aggregate 

importance of requirements by using social networks 

of stakeholders and collaborative filtering. The 
method called StakeRare pick out users who are also 

asked to recommend other users and their roles, 

creates a network using users as nodes and their 
recommendations as links, and orders users using 

different of network measures to generate a value for 

their influence on the project. It then asks the users 

to give rating to requirements in a list, recommends 
other requirements that might be relevant to them 

using collaborative filtering, and orders their 

requirements by the use of their ratings whose 
weight is generated from their influence on the 

project. 

Zhang, Harman and Mansouri ([ZHM07]) and 
Durillo et al. ([D+11]) noted that while previous 

works have formulated the NRP as having a single 

objective, in the real world, NRP should have 

multiple objectives due to the competing and 
conflicting nature of requirements, and gave a 

formulation of the NRP where two objectives – to 

maximize the total value of requirements and to 
minimize the cost of developing them, are 

considered. In this formulation, cost is taken as an 
objective and not as a constraint. 

 

2.2 Algorithms Used in SBSE 
 

A number of algorithms have been used in SBSE 

applications, some, very widely used, while some 

are just used as a ‘sanity check’ for new algorithms. 
The most basic set of algorithms are Random search 

and Hill Climbing. Some other algorithms include 

Simulated Annealing and Genetic Algorithms. 

 

2.2.1 Random Search 

 

Random search is the most basic of all search 
algorithms that have been used in the software 

engineering literature. It does not implement a 

fitness function which would give heuristic 
information about the areas in the search space that 

could give better solutions and those that would not 

be fruitful to search in, but rather makes a 'blind', 
unguided search for solutions. It therefore often fails 

to arrive at globally optimal solutions and is merely 

used as a 'sanity check' for new algorithms ([H+12]). 

 

 
Fig. 3. Random search may not find optimal solutions 

([Min11]) 
 

2.2.2 Hill Climbing 

 
Hill Climbing is the most basic search algorithm that 

uses a fitness information in guiding its search. The 

procedure starts by randomly choosing an initial 
solution. The procedure proceeds iteratively, such 

that at each execution, individuals that constitute 

near neighbours to the presently selected solution are 

checked out with their fitness values compared with 
that of the present solution for the possibility of 

getting a better solution. The nature of the problem 

being solved defines the criteria for individuals that 
would be considered as 'near neighbours'. Usually, 

determining the criteria for choosing individuals to 

be considered near neighbours to the present 

solution is relatively simple; individuals that are near 
neighbours are only a ‘small mutation away’ from 

the presently selected solution ([HMZ09]). 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

104 

With each execution of the main procedure, the hill 
climbing algorithm checks out all individuals that 

are near solutions to the present solution. If a near 

solution is found with a better fitness value than the 
present solution, the near neighbour is then selected 

as the new solution. This is done in two ways: 

1. The first individual in the neighbourhood seen 

to have a better fitness value than that of the 
present solution could be selected as the new 

solution. This is called the next ascent hill 

climbing. 
2. The fitness values of all the individuals in the 

whole neighbourhood of the present solution 

could be checked out, then the individual 

having the highest fitness value is chosen as 
the new solution. This is called the steepest 

ascent hill climbing. 

If at any point in the search, no neighbour with a 
higher fitness solution is found, the execution is 

stopped and the present solution is declared as the 

optimal solution. However, this solution might not 
be the global optimal solution; it might have been 

possible to get solutions with higher fitness values if 

the search is started from another point. This is as 

good as saying, figuratively, that a small ‘hill’ has 
been climbed within the landscape of the search that 

is close to the randomly chosen starting point 

([HMZ09]). Hill climbing algorithm is sufficiently 
simple to understand and easily implemented, and 

has shown some effectiveness in problems in SBSE 

([HMZ09]). 
 

 
Fig. 4. Hill climbing algorithm ([Min11]) 

 

2.2.3 Simulated Annealing 
 
Simulated Annealing (SA) is another local search 

algorithm (Harman et al., [H+12]) which can be 

viewed as a form of hill climbing, only that it 
attempts to avoid local maxima by allowing the 

search to move to a less fit search region. The 

method allows for more consideration of individuals 
with lesser fitness values in the beginning stages of 

the search. This allowance for consideration is 

gradually reduced until there is no more 

consideration for individuals with lesser fitness 

values, hence, the final stages of the search proceeds 
like a typical hill climbing method. 

Simulated annealing simulates the annealing of 

metals, in which a metal that has been extensively 
heated is left to slowly cool, thereby making it 

stronger. With the reduction in the temperature, the 

atoms of the metal are able to move less freely. 

However, the more free movements in the earlier 
stages of the process when temperature is higher 

make the atoms able to ‘explore’ multiple energy 

states ([HMZ09]). 
Simulated annealing algorithm  is allowed to move 

from a particular point to another point that is worse 

off (with a worse fitness) with a probability that is 

influenced by the reduction in fitness value and a 
‘temperature’ parameter that is a metaphor used to 

model the temperature of the metal in the real world 

annealing of metals. This temperature parameter is 
'cooled', thereby reducing the probability that the 

algorithm would follow an unfavorable move. The 

earlier stages that are supposedly ‘warmer’ (having a 
higher temperature) allow the algorithm to 

productively explore the search space, and 

expectedly, the high temperature would allow the 

search to escape local maxima. The method has been 
severally applied to SBSE problems ([B+06]). 

 

2.2.4 Genetic Algorithms 
 

Genetic Algorithms (GAs) are nature inspired 

algorithms that utilize the idea of population and 
recombination ([Hol75]). Genetic algorithms have 

seen the widest application to SBSE. The steps in 

the algorithm start by initializing a population with 

random values and then proceeds by performing a 
repetitive process on the population. Each iteration 

is a generation, while the population members are 

known as chromosomes as a way of relating to 
natural evolution. Some condition is pre-determined 

(in terms of the current solution or a particular 

number iterations) is set for the termination of the 

process. With each iteration, some members of the 
population are 'mated' to produce offspring by 

performing crossing over operations on their 

chromosomes, with part of the chromosomes of 
offspring produced mutated, a selection process is 

then performed to come about a new population. The 

combination and selection processes are informed by 
the fitness function, thus, fitter population members 

have a better chance of being selected and used as a 

parent in combination ([HMZ09]). There are quite a 

number of variations of this process, an example is 
the Non-dominated Sorting Genetic Algorithm 

(NSGA-II) created by Deb, Pratap, Agarwal and 

Meyarivan ([D+02]), nonetheless, the basic make-up 
of each variation is the same, such that the search is 

guided by the fitness of each solution, that basic 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

105 

concept of recombination of population members 
also hold. 

 

 
Fig. 5. Global search Genetic Algorithms, considering 

various points in the search space ([Min11]) 
 

2.2.5. Ant Colony Optimization (ACO) 
 

Ant Colony Optimization (ACO) is an optimization 
method having its origin as the Ant Colony System 

(ACS). It is used in designing metaheuristic 

algorithms for combinatorial optimization problems 
([DG97]). The ACS is such that a set of cooperating 

simple agents (ants) work together to find good 

solutions. It is based on the paradigm of how real 
ants work – they have the capacity to find the 

shortest path from a food source to their nest. 

Walking ants follow pheromones that have been 

deposited previously by other ants and also make 
their own pheromone deposits. Ants cooperate by 

communicating indirectly through the use of a 

distributed memory that is implemented using this 
concept of pheromones deposited along paths that 

could possibly lead to optimal solutions. The 

pheromones contain information about the structure 

of previously obtained good solutions ([DG97]). In 
Ant Colony algorithm, each ant creates its solution 

from an initial point that is randomly selected. At 

every stage, an ant identifies a set of neighboring 
individuals to visit (using the fitness function of the 

problem). From the set of all the individuals, it 

chooses one in a probabilistic way, considering the 
level of pheromone and heuristic information 

([D+15]).  

del Sagrado et al. ([D+15]) applied the Ant Colony 

Optimization algorithms to the NRP, while 
comparing results gotten with results from applying 

Greedy Randomized Adaptive Search Procedure 

(GRASP) and the Non-dominated Sorting Genetic 
Algorithm (NSGA-II). In the research, it was found 

out that the multi-objective ACS arrived at non 

dominated solution sets that are slightly better than 
those found by NSGA-II and GRASP. The 

researchers also noted having some difficulties with 

the crossover and mutation operations of the NSGA-

II. 

 

 

 

2.3 Pareto Optimality 
 

Pareto optimality is a concept that originated from 

the study of economic efficiency and is about 
manipulating and allocating resources based on two 

judgments - that the total value for the parties be 

increased while no party becomes worse off. When 

such changes that make at least one party better 
without making any party worse have been made, it 

is said to be a Pareto improvement. A Pareto optimal 

or Pareto efficient situations are when any further 
change to improve would make at least one party 

worse. The goal of Pareto optimization is to arrive at 

Pareto Optimal result ([Nic12]).  

The concept of Pareto Optimality has been widely 
used in the engineering field and is actually the goal 

of most engineering research. 

 

3. THE SOLUTION APPROACH 

 

The review of literature in the previous section 
shows the application of a number of metaheuristics 

in the attempt to get an even better Pareto optimal 

set. The aim of this project work, as stated in section 

one, is to apply a hybrid metaheuristic based on 
Variable Neighbourhood Search (VNS) and Tabu 

Search (TS) to the Next Release Problem (NRP). 

This section is dedicated to describing how this 
might be achieved. 

As noted in the previous section, the two important 

ingredients of SBSE are the problem representation 
which is the model and the fitness function ([HJ01, 

HC04, HMZ09]). This section is therefore organized 

as follows; first, the cost-value model for the NRP 

(the problem representation) used in this project is 
reviewed, the fitness function used is then presented, 

followed by discussion about the components of the 

hybrid metaheuristic (Variable Neighbourhood 
Search and Tabu Search), then the hybrid 

metaheuristic and how it is applied to NRP is fully 

described. 

 

3.1 The Problem Representation – The Cost-

Value NRP Model 

 
In this study, the cost-value NRP model proposed by 

Zhang et al. ([ZHM07]) is used. In the NRP model, 

it is taken that a software system would have a set of 
users; 

 

U = {u1, u2, . . . um} 

 
who have requested certain features to be included 

in the software system being developed. These 

requirements are represented as: 
 

R = {r1, r2, . . . rn} 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

106 

It is assumed that there are no interactions between 
these requirements, that is, they are independent of 

one another. For each requirement to be developed, 

it would cost the organization some resources, the 
resources that the development of each requirement 

would cost is seen as its cost. The costs for the users' 

requirement set ri(1 ≤ i ≤ n) is therefore represented 

in a vector as: 
 

C = {c1, c2, . . . cn} 

 
Also, each user is considered to be of different 

significance to the organization, this is represented 

using a weight factor. Each user uj(1 ≤ j ≤ m) is 

associated with a corresponding weight in the weight 
vector given by: 

 

W = {w1, w2, . . . wm} 
 

where wj ∈ [0, 1]. 

Again, a user with certain requirements has different 

levels of need for each of such requirements, that is, 

each requirement is of varying level of importance 

to the users. A user's level of satisfaction is 
dependent on which requirements gets developed in 

the software system. The overall users' satisfaction 

translate to value for the organization. Hence, each 
user uj(1 ≤ j ≤ m) signifies their degree of ‘need’ for 

a requirement ri(1 ≤ i ≤ n) by assigning a value given 

by value(ri, uj) to it. A value of value(ri, uj) > 0 

means user j has requested for requirement i. 
From the above, one can derive the overall 

importance score of a particular requirement ri(1 ≤ i 

≤ n) by: 
 

           

 

   

                

 
The ‘value’ of a requirement for the organization is 

the value of its ‘score’.  

The result sought after by a software engineer is a 
decision vector that tells which requirements are to 

be developed. The value 1 for xi means requirement i 

is chosen, value 0 means otherwise. The Pareto-

optimal front consists of multiple decision vectors to 
provide the decision maker with a wide range of 

options and trade-offs for a better decision making. 

 

3.2 The Fitness Function 

 

To make up the fitness function for the Multi 
Objective NRP (MONRP) in this project, two 

objectives, as used in Zhang et al. ([ZHM07]) and 

Durillo et al. ([D+11]) are considered – to maximize 

the satisfaction of users (which is the value for the 
organization) and to minimize the cost of developing 

the requirements. Note that cost is taken as the 
second objective in this work. This would help in 

exploring a more points in the set of Pareto-optimal 

fronts. 
The objective function for maximizing the total 

value is given below: 

 

                

 

   

      

 

That is, to select a subset of users’ requirements that 
gives the maximum value for the organization, in 

other words, to find the optimal combination of 

requirements that maximize value gotten by the 
organization. 

The objective function to minimize total cost 

selected requirements is as given below: 

 

            

 

   

      

 
To standardize this objective, the summation of the 

cost is multiplied by -1. The objectives to optimize 

in the fitness function is now given below: 
 

           
             

 

   

      

           
         

 

   

      

 

3.3 The Algorithm 
 

This section describes the individual components of 

the hybrid algorithm, the hybrid algorithm, the 
expected input structure and the expected output 

structure. 

 

3.3.1 Variable Neighbourhood Search 
 

Variable neighbourhood Search (VNS) is a global 

optimization combinatorial metaheuristic whose 
principle is to systematically change neighbourhood 

iteratively within the search. It capitalizes on the 

concept of neighbourhood change to help in escaping 
the common pitfall of local minima in heuristics. It 

works based on the following facts ([HM01]): 

1. A local minimum in one neighbourhood 

structure may not be the local minimum in 
another neighbourhood structure; 

2. A global minimum is a local minimum in 

every neighbourhood structures; 
3. For a lot of problems, local minima in one or 

several neighbourhood structures are not far 

apart 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

107 

It can be implied from the facts stated above that a 
local optimum will most likely give some 

information about the global maximum, which is the 

goal. 
Represent a finite set of pre-selected neighbourhood 

structures with Nk(k=1, . . . , kmax), and the set of 

solutions in the kth neighbourhood of x with Nk(x). 

(Most local search heuristics use one neighbourhood 
structure, that is, kmax=1). Neighbourhoods Nk may 

be generated and evaluated using the problem 

definition and fitness functions in the solution space 
S. Nk(x) represents the neighbourhood of a solution x 

 S. 

A solution x0  S is said to be a local minimum in 

Nk if no solution x∈Nk(x0)⊆S exists that is better 

than x0 (that is, f(x) < f(x0) where f is the defined 

fitness function of the problem) ([HM01]). 
The VNS algorithm is as defined below: 

 

Initialization. 

Select the set of neighbourhood structures Nk, for k 
= 1,... kmax. 

Find an initial solution x. 

Choose a stopping condition. 
Iterations. 

Repeat the following sequence until the stopping 

condition is met: 

(1) Set k ← 1. 
(2) Repeat the following steps until k = kmax: 

a. Shaking: Generate a point x’ at random from 

the kth neighbourhood of x (x0  N’ (x)). 
b. Local search. Apply some local search 

method with x’ as initial solution; denote as 
x’’ the obtained local optimum. 

c. Move or not: If this local optimum is better 

than the incumbent, then x ← x’’, and 
continue the search with N1(k ← 1); 

otherwise, set k ← k + 1. 

Listing 3.1. Pseudocode for Variable Neighbourhood 

Search VNS ([G+04]) 

 

3.3.2 Tabu Search 
 

Tabu Search (TS) was originally proposed by Glover 

([Glo89]) for solving combinatorial problems in 
operations research. It is as an extension of typical 

local search methods. According to Glover 

([Glo89]), Tabu Search does not qualify to be a 
proper heuristic, but rather, a meta-heuristic, that is, 

a strategy for controlling and guiding “inner” 

heuristics particularly tailored to the problems at 

hand. 
The major concept behind Tabu Search is that it 

selectively keeps the states encountered in memory, 

called tabu list. This is so as to guide an embedded 
search so that recently visited areas in the search 

space are no longer visited, that it, it is prevents 

cycling by keeping a history of visited states. This is 
achieved by keeping changes in recent moves within 

the search space and preventing future moves from 

reverting those changes. A Tabu Search algorithm 
could keep a short term, intermediate term or long 

term memory ([Gen03]). 

The history H kept on the tabu list is used to replace 

the neighbourhood of the current solution N(s) with 
a modified neighbourhood, which could be denoted 

N(H, s). N(H, s) is a subset of N(s). Therefore, the 

history H determines the solutions that could be 
reached by performing a move from the current 

solution, selecting another solution s0 from N(H, s). 

It is assumed that elements in N(s) that are not in 

N(H, s) which the algorithm seeks to identify are 
possible high quality local optima at different points 

in the search space. The history is used as part of a 

way of evaluating the currently accessed solutions, 
that is, Tabu Search replaces the fitness function f(s) 

with another function f(H, s) ([G+04]). 

In large problems, where N(H, s) could contain 
many elements, or in problems where it may be 

costly to examine these elements, the Tabu Search 

strategy becomes particularly useful as a candidate 

subset of the neighborhood could be isolated for 
examination rather than examining the entire 

neighbourhood ([G+04]). 

The TS algorithm is as defined below: 
 

Sbest ← ConstructInitialSolution() 

TabuList ← {} 

While (Not StopCondition()) 
    CandidateList ← {} 

    For (Scandidate Sbestneighbourhood) 
        If (Not ContainsAnyFeatures(Scandidate, 

TabuList)) 

            CandidateList ← Scandidate 
        End 

    End 

    Scandidate ← LocateBestCandidate(CandidateList) 

    If (Cost(Scandidate) ≤ Cost(Sbest)) 
        Sbest = Scandidate 

        TabuList = FeatureDifferences(Scandidate, Sbest) 

        While (TabuList > Tabulistsize) 
            DeleteFeature(TabuList) 

        End 

    End 
End 

Return (Sbest) 

Listing 3.2. Pseudocode for Tabu Search TS ([Bro15]) 

 

3.3.3 The Hybrid 
 

The main body of the hybrid is made up of the main 

body of the Variable Neighbourhood Search (VNS) 

algorithm while the history keeping strategy of Tabu 
Search (TS) is employed when creating new 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

108 

neighbourhood structures (local search spaces) for 
each initial neighbour generated. 

The procedure starts by randomly creating 

individuals that serves as pivot for each 
neighbourhood structure, that is, the number of 

individuals generated at start is the number of 

neighbourhood structures defined. Neighbourhood 

structures are then created for each individual, from 
which the good solutions (local optima) are added to 

the Pareto front. 

The generation of a neighbourhood structure from a 
pivot individual is based on creating different sorts 

based on the set objectives in the fitness function. 

The problem considered in this project has two 

objectives – value and cost, hence, the solution 
approach is tailored to this such that three sorts are 

created, one by value, the other by cost and the third 

by the value-cost ratio. Then various variations are 
made between these sorts to create new individuals, 

treating the cost in the pivot as a constraint such that, 

individuals having better value score without 
exceeding the cost is seen as a local optima and 

added to the Pareto front. If no better solution can be 

found, the individual itself is added to the Pareto 

front. The change made that generates an individual 
in the neighbourhood with lesser value score is 

added to that tabu list so that such changes can be 

avoided while creating new neighbours to avoid 
cycling. This procedure is then repeated, taking each 

individual initially generated as a pivot for each 

neighbourhood structure while adding each local 
optimum gotten to the Pareto optimal front. 

This procedure is guaranteed to have a Pareto front 

consisting of elements whose number is at least the 

number of individuals initially generated. This 
number is one of the parameters that would be set by 

the researcher.  This means that the software 

engineer can set as a parameter the minimum 
number of elements in the Pareto optimal set. The 

number of elements in the Pareto optimal set is 

however not limited to the value of this parameter – 

the parameter value is merely a minimum. 
It is important to note that the goal of this hybrid is 

to offer the decision maker a wide range of optimal 

Pareto solutions, with trade-offs between the set 
objectives from which an informed decision can be 

made, and not to provide a single optimal solution as 

it is with the VNS and the TS – this is the particular 
strength of this hybrid. 

The output of this algorithm is a Pareto optimal set. 

The elements of the set are decision vectors whose 

dimensionality is the total number of the set of 
requirements from which a subset is to be selected. 

The values of the elements in the decision vector 

could be either 0 or 1 signifying whether or not the 
corresponding the requirement is selected. 

The algorithm is as in the listing below: 

 

Initialization: 

  N ← No of individuals 

  Front ← {} 

  TabuList ← {} 
  K ← No of iterations 

  Randomly generate the set of neighbourhood 

structures Nk, for k = 1,... kmax 

The body: 
  For each Nk 

    LocalOptimum ← Nk 

    For i ← 1 to K 
      indiv ← GenerateIndiv(TabuList, Nk) 

      If (fit(indiv) > fit(Nk)) 

        Front[] ← LocalOptimum ← indiv 
      Else 

        TabuList[] ← difference(Nk, indiv) 

      Endif 

    Endfor 
    If (LocalOptimum == Nk) 

      Front[] ← Nk 

    Endif 
  Endfor 

  Return (Front) 

Listing 3.3. Pseudocode for the hybrid VNSTS 

 

3.3.4 The Structure of an ‘Individual’ 
 

An ‘individual’ as used in this research work is a 

decision vector whose dimensionality is the total 
number of the set of requirements used, that is, the 

size of input. The values of the elements in this 

individual is either 0 or 1 signifying whether or not 

the corresponding the requirement is selected. 
 

 
Fig. 6. Sample ‘individual’ structure, showing decision 

vector with elements representing requirements 
 

4. RESULTS 

 

4.1 The RALIC Datasets 

 

The RALIC datasets is the product of a research on 

requirements analysis and selection conducted by 
Lim ([Lim10]), making use of social networks and 

collaborative filtering. 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

109 

In the research work, a method of identifying and 
prioritizing stakeholders (which was called 

StakeNet) was developed. This method builds a 

stakeholders' social network, using an initial set 
recommendations of stakeholders by other 

stakeholders which makes up the links in the social 

network. The method then prioritizes the 

stakeholders in the network based on these 
recommendations. This kind of prioritization of 

stakeholders is an important factor in the method 

developed for identifying and prioritizing 
requirements – StakeRare, which also makes use of 

social networks and collaborative filtering in 

building a stakeholders’ recommendations system. 

Similar to the method of the StakeNet, stakeholders 
from the StakeNet provide ratings to an initial list of 

requirements while suggesting other requirements to 

be added to the network. The StakeRare then uses 
the ratings and the priorities of the stakeholders from 

the StakeNet in prioritizing the requirements 

([Lim10]). In accordance with the model used in this 
research, the overall significance of the stakeholders 

who have requested for a particular requirement has 

a direct impact on the total perceived value of the 

stakeholders’ ratings on each requirement. An 
aggregate of the recommendations for every 

stakeholder is therefore collected. This aggregate for 

each stakeholder is then multiplied with the 
stakeholder’s rating for each requirement, with the 

resulting value replacing the original rating value for 

the requirement by the stakeholder. These newly 
computed ratings for each requirement are then 

summed up to get the total value for each 

requirement. These values for each requirement and 

the corresponding costs are then loaded as part of the 
inputs to the algorithm for optimization. 

 

4.2 Results from the Hybrid Metaheuristic 

Algorithm 

 

The hybrid algorithm (Variable Neighbourhood 

Search and Tabu Search – VNSTS) requires the 
following as input: 

1. n – An integer number, representing the 

number of neighbourhood structures to be 
created. This parameter can be used to control 

the number of individuals in the result set. The 

algorithm will have at least n individuals in its 
result set. 

2. r – A floating point number between 0 and 1, 

representing the probability that the value of 

an element of a decision vector in each 
individual is 0, that is, the smaller the number 

r, the higher the chance that the value of an 

element in a decision vector will be 1, and 
vice versa. This parameter can be used to 

control number of ‘accept’ decisions present 
in each generated individual. 

3. d – An integer number denoting the 

dimensionality of each individual. This is the 
number of requirements that the algorithm will 

take. Each element of the decision vector in 

each individual corresponds to a decision 

whether or not to fulfill a requirement, that is, 
a one to one mapping exists between the 

elements and the requirements, hence, 

dimensionality equals number of 
requirements.  

4. A structured list of requirements containing 

value and cost for each requirement. 

The following tables and figures show the summary 
of the various results gotten from multiple runs of 

the VNSTS algorithm, using the requirement list in 

Table 5 above as input, alongside other parameters 
set. The average of the score and cost of all the 

individuals is calculated for the result set in each 

run. Each result set contains a set of individuals, 
each representing decision vectors for the input 

requirement sets. In each of the tables, the 

cardinality of the result set is given under the 

heading ‘No of individuals in result set’. Each 
individual in each result set contains a different 

combination of decisions ‘Accept’ or ‘Decline’ for 

each requirement with the score and cost of only 
requirements with ‘Accept’ decision added together 

to make up the score and cost value for the particular 

individual. The average score and cost values of the 
individuals in the result set of every run is then 

calculated. 

 
Table 1: Experiment 1 with VNSTS 

 
Algorithm: 

VNSTS 

Algorithm Parameters: 
n = 5; r = 0.5 

d = 132 (Total number of 

requirements in the list having 

cost) 

Run 

No of 

individuals 

in result set 

Average Score Average Cost 

1 11 2539.701924 6836.636364 

2 13 2620.943 6011.308 

3 11 2663.269 7482.909 

4 11 2663.119 7484.091 

5 13 2620.197 6143.615 

6 11 2634.022 7398.091 

7 9 2627.812 7640.778 

8 13 2583.684 5738.385 

9 7 2270.487 9619.143 

10 12 2661.988 6269.667 

 

In experiment 2 in Table 2 above, the value of n is 
increased to 10. This has consequently increased the 

range of the number of individuals in the result set 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

110 

for each run from what is obtainable in experiment 1 
in Table 1 where the value of n is set to 5. 

 
Table 2: Experiment 2 with VNSTS 

 
Algorithm: 

VNSTS 

Algorithm Parameters: 

n = 10; r = 0.5 

d = 132 (Total number of 

requirements in the list having 
cost) 

Run 

No of 

individuals in 

result set 

Average 

Score 

Average 

Cost 

1 19 2624.386 8350.105 

2 21 2563.301 6922.571 

3 23 2632.772 6490.609 

4 21 2499.216 7268.857 

5 20 2588.367 8738.45 

6 16 2362.69 9884.625 

7 23 2515.569 6353.087 

8 24 2614.799 6913.792 

9 16 2425.014 10364.44 

10 18 2460.791 8692.778 

 
Table 3: Experiment 3 with VNSTS 

 
Algorithm: 

VNSTS 

Algorithm Parameters: 

n = 10; r = 0.75 

d = 132 (Total number of 

requirements in the list having 

cost) 

Run 

No of 

individuals in 

result set 

Average 

Score 

Average 

Cost 

1 28 2576.91 6188.25 

2 28 2235.09 3779.179 

3 28 2659.616 6718.429 

4 27 2551.035 6194.667 

5 30 2164.346 3825.633 

6 30 2270.547 4285.5 

7 30 2100.383 3047.2 

8 29 2339.315 4498.034 

9 29 2326.082 4446.069 

10 29 2456.692 5488.207 

 

In experiment 3 in Table 3 above, the value of n was 

kept at 10 while the value of r is increased to 0.75. 
This led to a consequential increment in the number 

of individuals in the result set for each run, 

compared to the results in the experiment in Table 3, 

which has the same value for n, but a smaller r 
value. Also, at 0.75 value for r, the number of 

individuals in each result set seems to vary less 

often. Furthermore, the score and cost values have 
reduced slightly. This is because there is now a 0.75 

probability that a requirement would be declined. 

In experiment 4 in Table 4, the value of n was also 
kept at 10 while the value of r is increased to 0.85. 

This did not bring any significant change to the 

range of number of individuals in each result set to 

what is obtained in Table 3. However, the score and 
cost values have decreased even more; the 

probability that a requirement would be declined is 
now 0.85. 

 
Table 4: Experiment 4 with VNSTS 

 
Algorithm: 

VNSTS 

Algorithm Parameters: 

n = 10; r = 0.85 

d = 132 (Total number of 

requirements in the list having 
cost) 

Run 

No of 

individuals in 

result set 

Average 

Score 

Average 

Cost 

1 29 1767.459 1819.793 

2 28 1680 1522.071 

3 30 1954.237 2744.533 

4 27 1941.817 2814.926 

5 29 2039.727 3356.379 

6 27 2056.981 3432.63 

7 28 2142.381 3843.25 

8 28 2119.96 3822.036 

9 30 1906.873 2625.367 

10 30 1799.078 2250.333 

 
Table 5: Experiment 5 with VNSTS 

 
Algorithm: 

VNSTS 

Algorithm Parameters: 

n = 15; r = 0.5 
d = 132 (Total number of 

requirements in the list 

having cost) 

Run 

No of 

individuals in 

result set 

Average 

Score 

Average 

Cost 

1 30 2417.999 7388.167 

2 29 2567.462 8218.655 

3 28 2472.155 7645.929 

4 31 2554.932 8256.839 

5 32 2514.719 6895.344 

6 32 2575.398 7301.625 

7 26 2444.514 7890.346 

8 29 2443.011 7411.724 

9 25 2312.83 9158.36 

10 25 2275.101 9136.16 

 
In experiment 5 in Table 5 above, the value of r is 

set back to 0.5 while the value of n is increased to 

15. Comparing the results in this table with those in 
Table 2 which has the same value of r and a smaller 

value of n, it is noted that the range of numbers of 

individuals in the results in Table 5 is significantly 
larger than what is obtained in Table 2. This effect is 

due to the change in the value of n. 

Experiment 6 in Table 6 is merely to see the effect 

of a much larger value of n (set to 50). Comparing 
the results in Table 6 to those in Table 9 (having the 

same value for r and the value for n set to 10), it is 

seen that there is a significant increase in the number 
of individuals in the result set in Table 6. 

 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

111 

Table 6: Experiment 6 with VNSTS 

 
Algorithm: 

VNSTS 

Algorithm Parameters: 

n = 50; r = 0.85; d = 132 (Total 
number of requirements in the list 

having cost) 

Run 

No of 

individuals 

in result set 

Average Score Average Cost 

1 130 1917.266 2647.185 

2 120 1897.43 2479.75 

3 125 2057.485 3424.112 

4 126 1990.807 3168 

5 126 1920.05 2762.476 

 

From the results from the various experiments 

performed on the VNSTS algorithm, it was noticed 
that for the same size of requirement list and value of 

n, runs that have higher number of individuals in their 

result set have higher score averages and lower cost 
averages and hence, could be deemed to have better 

the results. It was also noticed that the number of 

individuals in the result set increases with the value of 

n and also slightly with the value of r, while the score 
and cost values reduce when r was increased and also 

when n was increased. The number of individuals in 

the result set also seems to converge at 0.75 value of 
r. Another important discovery is that higher values of 

n did not have any significant effects on the execution 

time of the algorithm. 
Furthermore, the differences between the score 

values in each of the runs in each of the experiments 

performed seems to be less pronounced as the 

differences between the cost values, this is because 
the differences between the cost values in the input 

requirements list in Table 1 are much more 

pronounced than the differences between the score 
values. Such differences are therefore not due to the 

method of solution. 

 

4.3 Results from NSGA-II Algorithm 

 

The NSGA-II requires the following as input: 

1. g – An integer, representing the number of 
generations the algorithm gets to, that is, the 

algorithm will generate g generations. This is 

the major stopping condition for the algorithm. 
2. p – An integer, representing the number of 

individuals in each population 

3. d – An integer, representing the 

dimensionality of each individual, that is, the 
number of genes each individual has. This is 

the number of requirements that the algorithm 

will take. Each element of the decision vector 
in each individual corresponds to a decision 

whether or not to fulfill a requirement, that is, 

a one to one mapping exists between the 
elements and the requirements, hence, 

dimensionality equals number of 
requirements. 

4. t – An integer number representing tournament 

size. This number is used when selecting 
parents for mating. A group of individuals of 

size t is selected from the population, with the 

fittest of them chosen as a parent. 

5. ps – An integer number representing mating 
pool size. ps number of parents are selected 

into the mating pool for mating 

6. mp – A floating point number representing the 
probability that a gene of a child individual 

will be not be gotten from either of its parents. 

7. u – A floating point number representing the 

uniformity of the amount of genes that a child 
gets from either parents during crossover. 

8. A structured list of requirements having value 

and cost for each requirement. 
The following tables and figures show the summary 

of the various results from multiple experiments with 

the NSGA-II algorithm, using the requirement list in 
Table 5 above as input, alongside other parameters 

set, guided by recommendations from literature. 

As it is with the experiments in the previous section, 

the average of the score and cost of all the individuals 
is calculated for the result set in each run. Each result 

set contains a set of individuals, each representing 

decision vectors for the input requirement sets. In 
each of the tables, the cardinality of the result set is 

given under the heading ‘No of individuals in result 

set’. Each individual in each result set contains a 
different combination of decisions ‘Accept’ or 

‘Decline’ for each requirement with the score and 

cost of only requirements with ‘Accept’ decision 

added together to make up the score and cost value 
for the particular individual. The average score and 

cost values of the individuals in the result set of every 

run is then calculated. 
 

Table 7: Experiment 7 with NSGA-II 

 
Algorithm: 

NSGA-II 

Algorithm Parameters: 

g = 50; p = 20; t = 5; ps = 20; 

mp = 0.015; u  = 0.5; d = 132 

(Total number of requirements 

in the list having cost) 

Run 

No of 

individuals in 

result set 

Average Score 
Average 

Cost 

1 20 2315.923 4166.1 

2 20 2267.985 3945.95 

3 20 2318.027 3339.2 

4 20 2368.694 4059.4 

5 20 2314.801 3139.45 

6 20 2348.006 3669.45 

7 20 2544.499 4566.75 

8 20 2358.124 3594.8 

9 20 1920.671 2206.8 

10 20 2262.737 3046.5 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

112 

Table 8: Experiment 8 with NSGA-II 

 
Algorithm: 

NSGA-II 

Algorithm Parameters: 

g = 50; p = 30; t = 5; ps = 30; 
mp = 0.015; u  = 0.5 

d = 132 (Total number of 

requirements in the list having 

cost) 

Run 

No of 

individuals in 

result set 

Average 

Score 

Average 

Cost 

1 30 2519.976 4558.967 

2 30 2428.454 3761.1 

3 30 2447.564 3957.3 

4 30 2413.563 3684.667 

5 30 2406.381 3368.467 

6 30 2386.735 3802.667 

7 30 2327.486 3386.3 

8 30 2121.151 2335.8 

9 30 2391.305 3356.133 

10 30 2122.449 2890.733 

 

In experiment 8 in Table 8 above, comparing with 
experiment 7 in Table 7, the population size p and 

the size of mating pool are both set to 30 in Table 8, 

increased from the value of 20 set in Table 7. 

Results in both tables show that the number of 
individuals in each result set is the same as the size 

of the population. Results in Table 8 (with an 

increased population size) show a slight increase in 
the average score and cost values of run. 

In experiment 9 in Table 9, the population size and 

the size of mating pool were increased further to 40. 
This led to an increased number of individuals in the 

result set, and a slight, almost negligible increase in 

the score averages of each run. 

Experiments with the NSGA-II algorithm show that 
the score and cost values increase slightly with an 

increase in population size p, however, time of 

execution also increases significantly with an 
increase in population size p. It is therefore difficult 

for a decision maker to control the level of score and 

cost values and target a desirable range. 
 

Table 9: Experiment 9 with NSGA-II 

 
Algorithm: 

NSGA-II 

Algorithm Parameters: 

g = 50; p = 40; t = 5; ps = 40; 

mp = 0.015; u  = 0.5 

d = 132 (Total number of 

requirements in the list having 

cost) 

Run 

No of 

individuals in 

result set 

Average 

Score 

Average 

Cost 

1 40 2382.491 3424.35 

2 40 2321.328 3367 

3 40 2449.157 3450.45 

4 40 2402.444 3216.475 

5 40 2517.614 3820.45 

6 40 2217.521 2580.175 

7 40 2330.445 3248.075 

8 40 2413.783 3641.325 

9 40 2445.492 3636.55 

10 40 2354.887 3727.85 

 
The table below gives a comparison of result sets 

having about the same number of individuals 

selected from experiments with VNSTS and NSGA-
II algorithms. A score-cost ratio is calculated for 

each. The table show some results from the NSGA-

II algorithm having better score-cost ratio. 
The following table gives a summary of the findings 

from the experiments conducted with VNSTS and 

NSGA-II: 

 
Table 10: Comparison of results from VNSTS and NSGA-II 

NSGA-II  VNSTS 

No of 

Individuals 
Score Cost 

Score/Cost 

Ratio 

 No of 

Individuals 
Score Cost 

Score/Cost 

Ratio 

30 2519.976 4558.967 0.552752  30 2164.346 3825.633 0.565748 

30 2428.454 3761.1 0.645677  30 2270.547 4285.5 0.529821 

30 2447.564 3957.3 0.618493  30 2100.383 3047.2 0.689283 

30 2413.563 3684.667 0.655029  30 1954.237 2744.533 0.712047 

30 2406.381 3368.467 0.714385  30 1906.873 2625.367 0.726326 

30 2386.735 3802.667 0.627648  30 1799.078 2250.333 0.799472 

30 2327.486 3386.3 0.687324  30 2417.999 7388.167 0.32728 

30 2121.151 2335.8 0.908105  29 2339.315 4498.034 0.520075 

30 2391.305 3356.133 0.712518  29 2326.082 4446.069 0.523177 

30 2122.449 2890.733 0.734225  29 2456.692 5488.207 0.447631 

  Sum: 6.856155    Sum: 5.840861 

 

  



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

113 

5. SUMMARY 
 

This research work described how a hybrid of 

Variable Neighbourhood Search and Tabu Search 
could be applied to the Next Release Problem in 

Software Engineering. The Next Release Problem 

(NRP) is a problem arising from the need for a 

software engineer to decide on what requirements to 
develop as features in the next release of the 

software being developed from a long list of 

competing requirements, having costs and perceived 
values, all of which cannot be developed given a 

limited resources. The software engineer is 

interested in maximizing the total value gotten from 

the selected requirements while minimizing the cost 
of developing them. The choice of the method of 

solution is based on the work of Garcia-Torres et al. 

([G+04]) who applied a hybrid of Variable 
Neighbourhood Search and Tabu Search to solving 

the Feature Subset Selection problem which the 

NRP is a type of ([B+06, ZHM07]). The model used 
in this project is a cost-value model for requirements 

([ZHM07, D+11]), where only two objectives are 

considered with cost formulated as an objective. The 

real world Replacement Access, Library and ID 
Card project (RALIC) datasets ([Lim10], [LF12]) 

were used in performing experiments with the 

hybrid algorithm. The state-of-the-art algorithm 
NSGA-II was also implemented, with experiments 

carried out using the same data. Experiments 

showed that for result sets having the same number 
of individuals from either algorithms, some of the 

results from NSGA-II were slightly better. However, 

trade-offs such as easier and cheaper parameter 

tuning, larger solution set were discovered with the 
NSGA-II. 

 

6. CONCLUSION 
 

Experiments have shown that the VNSTS algorithm 

gives results with a relatively large and dynamic 

number of individuals with a predictable range, such 
that a decision maker can predetermine the range of 

the number of choices he would prefer by 

manipulating the algorithm parameters. A decision 
maker can also predetermine the range of score and 

cost values for which a Pareto optimal set is needed 

by manipulating the algorithm parameters. 
Furthermore, from the results gotten from the 

experiments performed, it can be deduced that the 

VNSTS is a ‘good enough’ algorithm for application 

on the NRP, especially when the decision maker has 
a target cost value and he wishes to tune the 

algorithm parameters easily and cheaply (in terms of 

computational power), and also when the decision 
maker wants a very much wide set of options from 

which to select from. 

Moreover, from the results of the experiments 
conducted, the VNSTS algorithm shows a good 

prospect, arriving at ‘good enough’ solutions, this 

means that it can be applied to solving other 
optimization problems, in and out of software 

engineering 

 

7. RECOMMENDATION AND FUTURE 

WORK  

 

Informed by the prospects demonstrated by the 
VNSTS algorithm, further application of the 

algorithm on other search based software 

engineering areas is recommended. A more problem 

specific approach could be researched for each 
application to increase the chance of getting even 

better results. This research considered two 

objectives in the NRP, further application of the 
VNSTS could be done on the NRP, using a single 

objective or many (more than two) objectives with 

risk uncertainty. 
Furthermore, since the VNSTS algorithm is an 

optimization algorithm, and given the success in its 

application on the FSS problem in literature and on 

NRP in this project, application of the VNSTS on 
other optimization problems is therefore a good way 

to proceed. 

 

REFERENCES 
 

[AAG10] F. Asadi, G. Antoniol, Y. Gueheneuc 
- Concept locations with genetic 

algorithms: A comparison of four 

distributed architectures. In 

Proceedings of 2nd International 
Symposium on Search based Software 

Engineering (SSBSE 2010), Benevento, 

Italy, 2010. IEEE Computer Society 
Press. 

 

[AGS16] S. Agarwal, S. Gupta, N. Sabharwal - 

Automatic Test Data Generation-
Achieving Optimality Using Ant-

Behaviour. International Journal of 

Information and Education Technology, 
Vol. 6, No. 2, February 2016. 

 

[Bro15] J. Brownlee - Clever Algorithms: 
Nature-Inspired Programming Recipes. 

2015. 

http://www.cleveralgorithms.com/natur

e-inspired/stochastic/tabu_search.html 
[accessed 16/6/2016]. 

 

[BRW01] A. J. Bagnall, V. Rayward-Smith, I. 

M. Whittley - The next release 

http://www.cleveralgorithms.com/nature-inspired/stochastic/tabu_search.html
http://www.cleveralgorithms.com/nature-inspired/stochastic/tabu_search.html


Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

114 

problem. Information and Software 
Technology 43 pgs. 883 – 890, 2001. 

 

[BSA06] S. Bouktif, H. Sahraoui, G. Antoniol - 
Simulated Annealing for Improving 

Software Quality Prediction. In 

Proceedings of the 8th annual 

Conference on Genetic and 
Evolutionary Computation (GECCO 

’06), pages 1893–1900, Seattle, 

Washington, USA. ACM, 2006. 
 

[B+06] P. Baker, M. Harman, K. Steinhofel, 

A. Skaliotis - Search Based 

Approaches to Component Selection 
and Prioritization for the Next Release 

Problem. 22nd IEEE International 

Conference on Software Maintenance 
(ICSM '06), 2006. 

 

[CA07] B. H. C. Cheng, J. M. Atlee - 
Research directions in requirements 

engineering. Proceedings of 

international conference on software 

engineering, ISCE 2007. Workshop on 
the future of software engineering 

(FOSE 2007). Minneapolis, pp 285–

303, 2007. 
 

[DG97] M. Dorigo, M. Gambardella - Ant 

Colony System: A Cooperative 
Learning Approach to the Traveling 

Salesman Problem. IEEE Transactions 

on Evolutionary Computation. Vol. 1 

Issue 1, 1997. 
 

[D+02] K. Deb, A. Pratap, S. Agarwal, T. 

Meyarivan - A Fast and Elitist 
Multiobjective Genetic Algorithm: 

NSGA-II. IEEE Transactions on 

Evolutionary Computation. Vol 6, Issue 

2. Pages 182-197, 2002. 
 

[D+11] J. J. Durillo, Y. Zhang, E. Alba, M. 

Harman, A. J. Nebro - A Study of the 
Bi-Objective Next Release Problem. 

Empirical Software Engineering. 

February 2011, Volume 16, Issue 1, pp 
29-60. 

 

[D+15] J. del Sagrado, I. M. del Aguila, F. J. 

Orellana - Multi-objective ant colony 
optimization for requirements selection. 

Empirical Software Engineering. June 

2015, Volume 20, Issue 3, pp 577-610, 
2015. 

 

[Gen03] M. Gendreau - An introduction to tabu 
search. Volume 57 of the series if the 

International Series in Operations 

Research & Management Science pp 
37-54, 2003. 

 

[Glo89] F. Glover - Tabu Search-Part I. 

Operations Research Society of 
America Journal on Computing Vol. 1, 

No. 3, Summer 1989. 

 
[God97] P. Godefroid - Model Checking for 

Programming Languages using 

Verisoft. In Proceedings of the 24th 

ACM SIGPLAN-SIGACT symposium 
on Principles of Programming 

Languages, pages 174–186, Paris, 

France. ACM, 1997. 
 

[GHA09] S. Gueorguiev, M. Harman, G. 

Antoniol - Software Project Planning 
for Robustness and Completion Time in 

the Presence of Uncertainty using Multi 

Objective Search Based Software 

Engineering. GECCO 09. Proceedings 
of the 11th annual conference on 

genetic and evolutionary computation. 

Pages 1673-1680, 2009. 
 

[G+04] M. Garcia-Torres, F. Garcia-Lopez, 

B. Melian-Batista, J. A. Moreno-
Perez, J. M. Moreno-Vega - Solving 

Feature Subset Selection Problem by a 

Hybrid Metaheuristic, 2004. 

 
[Har10] M. Harman - Why the Virtual Nature 

of Software Makes it Ideal for Search 

Based Optimization. Fundamental 
Approaches to Software Engineering. 

Volume 6013 of the series Lecture 

Notes in Computer Science, pp 1-12, 

2010. 
 

[Hol75] J. H. Holland - Adaption in Natural 

and Artificial Systems. MIT Press, Ann 
Arbor, 1975. 

 

[HC04] M. Harman, J. Clark - Metrics are 
fitness functions too. 10th International 

Software Metrics Symposium 

(METRICS 2004), pages 58–69, Los 

Alamitos, California, USA, September 
2004. IEEE Computer Society Press. 

 

[HJ01] M. Harman, B. F. Jones - Search-
based software engineering. 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

115 

Information and Software Technology 
43. Pgs. 883 – 839, 2001. 

 

[HM01] P. Hansen, N. Mladenovic - Variable 
neighborhood search: Principles and 

applications. European Journal of 

Operational Research. Volume 130, 

Issue 3, 1 May 2001, pp 449–467. 
 

[HM10] M. Harman, A. Mansouri - Search 

Based Software Engineering: 
Introduction to the Special Issue of the 

IEEE Transactions on Software 

Engineering. IEEE Transactions on 

Software Engineering, Vol. 36, No. 6, 
November/December 2010. 

 

[HT07] M. Harman, L. Tratt - Pareto Optimal 
Search Based Refactoring at the Design 

Level. Proceedings of the 9th annual 

conference on genetic and evolutionary 
computation. GECCO 07 pp. 1106-

1113, 2007. 

 

[HKF08] P. He, L. Kang, M. Fu - Formality 
Based Genetic Programming. In 

Proceedings of the IEEE Congress on 

Evolutionary Computation (CEC ’08) 
(IEEE World Congress on 

Computational Intelligence), pages 

4080–4087, Hong Kong, China. IEEE 
Press, 2008. 

 

[HMZ09] M. Harman, S. A. Mansouri, Y. 

Zhang - Search Based Software 
Engineering: A Comprehensive 

Analysis and Review of Trends 

Techniques and Applications. Technical 
Report TR-09-03, Department of 

Computer Science, King’s College 

London, April 2009. 

 
[H+12] M. Harman, P. McMinn, J. Teixeira 

de Souza, S. Yoo - Search Based 

Software Engineering: Techniques, 
Taxonomy, Tutorial. Empirical 

Software Engineering and Verification, 

Volume 7007 of the series Lecture 
Notes in Computer Science pp 1-59, 

2012. 

 

[Joh07] C. Johnson - Genetic Programming 
with Fitness based on Model Checking. 

In Proceedings of the 10th European 

Conference on Genetic Programming, 
volume 4445 of LNCS, pages 114–124, 

Valencia, Spain. Springer, 2007. 

[KP08] G. Katz, D. Peled - Genetic 
Programming and Model Checking: 

Synthesizing New Mutual Exclusion 

Algorithms. In Proceedings of the 6th 
International Symposium on Automated 

Technology for Verification and 

Analysis (ATVA ’08), volume 5311 of 

LNCS, pages 33–47, Seoul, Korea. 
Springer, 2008. 

 

[K+08] P. Kapur, A. Ngo-The, G. Ruhe, A. 

Smith - Optimized staffing for product 

releases and its application at 

Chartwell Technology. J. Softw. Maint. 

Evol.: Res. Pract., 20: 365–386. doi: 
10.1002/smr.379, 2008. 

 

[Lim10] S. L. Lim - Social Networks and 
Collaborative Filtering in Large-Scale 

Requirements Elicitation. PhD Thesis. 

School of Computer Science and 
Engineering, University of New South 

Wales, Sydney, Australia, 2010. 

 

[LF12] S. L. Lim, A. Finkelstein - StakeRare: 
Using Social Networks and 

Collaborative Filtering for Large-Scale 

Requirements Elicitation. IEEE 
Transactions on Software Engineering. 

Issue 3 Volume 38, pages 707 – 735, 

2012. 
 

[Min04] P. McMinn - Search-based Software 

Test Data Generation: A Survey. 

Software Testing, Verification and 
Reliability, 14(2), 105–156, 2004. 

 

[Min11] P. McMinn - Search-based testing: 
Past, present and future. In Proceedings 

of the 3rd International Workshop on 

Search-Based Software Testing (SBST 

2011), Berlin, Germany, 2011, To 
Appear. IEEE, 2011. 

 

[MB06] P. K. Mahanti, S. Banerjee - 
Automated Testing in Software 

Engineering: using Ant Colony and 

Self-Regulated Swarms. In Proceedings 
of the 17th IASTED international 

conference on Modelling and 

simulation (MS ’06), pages 443–448, 

Montreal, Canada. ACTA Press, 2006. 
 

[MS76] W. Miller, D. Spooner - Automatic 

generation of floating-point test data. 
IEEE Transactions on Software 

Engineering, 2(3):223–226, 1976. 



Anale. Seria Informatică. Vol. XIV fasc. 2 – 2016 
Annals. Computer Science Series. 14

th
 Tome 2

nd
  Fasc. – 2016 

 

116 

[Nic12] B. Nicholas - The relevance of 
efficiency to different theories of 

society. Economics of the Welfare State 

(5th ed.). Oxford University Press. p. 
46. ISBN 978-0-19-929781-8, 2012. 

 

[Rai09] O. Raiha - A Survey on Search Based 

Software Design. Technical Report D-
2009-1, Dept. of Computer Sciences, 

University of Tampere, 2009. 

 
[RPV03] W. N. Robinson, S. D. Pawlowski, V. 

Volkov - Requirements Interaction 

Management. ACM Computing 

Surveys (CSUR). Volume 25 Issue 2, 
June 2003. Pages 132-190. ACM New 

York, NY, USA. 

 
[SA13] A. S. Sayyad, H. Ammar - Pareto-

Optimal Search-Based Software 

Engineering (POSBSE): A Literature 
Survey. Realizing Artificial Intelligence 

Synergies in Software Engineering 

(RAISE), 2013 2nd International 

Workshop. 00. 21-27, 2013. 
 

[SX93] M. Schoenauer, S. Xanthakis - 

Constrained GA Optimization. In 
Proceedings of the 5th International 

Conference on Genetic Algorithms 

(ICGA ’93), pages 573–580, San 
Mateo, CA, USA. Morgan Kauffmann, 

1993. 

 

[V+05] J. M. Van den Akker, S. 

Brinkkemper, G. Diepen, J. 

Versendaal - Determination of the next 

release of a software product: an 
approach using integer linear 

programming. In: Proceeding of the 

11th International Workshop on 

Requirements Engineering: Foundation 
for Software Quality (REFSQ 2005), 

pp. 119–124, 2005. 

 
[ZH10] Y. Zhang, M. Harman - Search Based 

Optimization of Requirements 

Interaction Management. Search Based 

Software Engineering (SSBSE), 2010 
Second International Symposium. 7-9 

Sept. 2010. pp 47-56, 2010. 

 
[ZHL13] Y. Zhang, M. Harman, S. L. Lim - 

Empirical Evaluation of Search Based 

Requirements Interaction Management. 
Information and Software Technology. 

January 2013, Vol.55(1): 126-152. 

 

[ZHM07] Y. Zhang, M. Harman, S. A. 

Mansouri - The Multi-Objective Next 

Release Problem. In Proceedings of the 

9th annual Conference on Genetic and 
Evolutionary Computation (GECCO 

’09). Paged 1129-1137. London, UK, 

ACM, 2007. 


